Derivative and Power Rule

Q:  Find f ‘ (t) if f(t) = sqrt(3)/t^4

(using the power rule)


Step 1)  Rewrite the problem to get t^4 out of the denominator:

sqrt(3)/t^4 = sqrt(3)*t^-4

So, now take the derivative of sqrt(3)*t^-4

Remember, “sqrt(3)” is a constant multiplier, so it just stays along for the ride.  The power rule tells you to bring the exponent down as a multiplier and then subtract 1 from the exponent, like so:

f(t) = sqrt(3)*t^-4

f ‘ (t) = sqrt(3)*(-4)*t^(-4-1)

f ‘ (t) = -4*sqrt(3)t^-5  [final answer]

You could rewrite f ‘ (t) to putt back in the denominator like so:

f ‘ (t) = -4*sqrt(3) / t^5

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s